|
The Lerche–Newberger, or Newberger, sum rule, discovered by B. S. Newberger in 1982,〔 .〕〔 . 〕〔 . 〕 finds the sum of certain infinite series involving Bessel functions ''J''''α'' of the first kind. It states that if ''μ'' is any non-integer complex number, , and Re(''α'' + ''β'') > −1, then : Newberger's formula generalizes a formula of this type proven by Lerche in 1966; Newberger discovered it independently. Lerche's formula has γ =1; both extend a standard rule for the summation of Bessel functions, and are useful in plasma physics.〔 . 〕〔 . 〕〔 . 〕〔 . 〕 ==References== 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Lerche–Newberger sum rule」の詳細全文を読む スポンサード リンク
|